IDENTIFICACIÓN DE ESTILOS DE APRENDIZAJE BAJO EL MODELO VARK CON REDES NEURONALES

  • Sulmy Saavedra Delgado Universidad Señor de Sipán
  • Martín Efio Rivas Universidad Señor de Sipán
  • Carlos Chirinos Mundaca Universidad Señor de Sipán
Palabras clave: Algoritmo de Retropropagación, Estilos de Aprendizaje - Redes Neuronales, Perceptron Multicapa

Resumen

Una de las reformas institucionales urgentes en nuestro país recae en la política educativa, urge de contar con un sistema educativo equitativo y eficiente, como uno de los principales dinamizadores del desarrollo del país, sin embargo el aprendizaje en niños y el aprestamiento de los jóvenes deja mucho que desear, no solo son de bajo nivel, sino que están muy mal distribuidos en la sociedad.

Dentro de este contexto cabe analizar las estrategias de enseñanza, para promover aprendizajes significativos; las estrategias variaran según lo que se quiere aprender, cada estudiante tiende a desarrollar preferencias o tendencias globales, definiendo un estilo de aprendizaje.

Se plantea una aplicación inteligente utilizando la técnica de Redes Neuronales Artificiales (RNA) – variable independiente, a través del modelo de red Perceptron Multicapa (PMC), adecuado para resolver problemas de asociación de patrones, e identificar estilos individuales de aprendizaje en alumnos a través de una asociación de patrones, basado en el modelo VARK (variable dependiente), el cual clasifica a las personas de acuerdo a su preferencia; formado por las letras iniciales de cuatro preferencias modales sensoriales: Visual, Auditiva, Lectura (Read) y Kinesico (Kinesthetic).

La RNA tiene 64 neuronas de entrada, 45 neuronas ocultas y 4 neuronas de salida; la capa de entrada conformada por las alternativas del test formado por 16 preguntas, para la investigación se realizó un estudio primero exploratorio y luego documentado, para formular el problema de investigación y plantear los objetivos a desarrollar, la recolección de información fue a través de entrevistas y encuestas

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Sulmy Saavedra Delgado, Universidad Señor de Sipán

Escuela de Ingeniería Sistemas. Facultad de Ingeniería Arquitectura y Urbanismos. Ingeniero de Sistemas. Universidad Señor de Sipán. Pimentel. Lambayeque. Perú. sulyt6@hotmail.com

Martín Efio Rivas, Universidad Señor de Sipán

Escuela de Ingeniería Sistemas. Facultad de Ingeniería Arquitectura y Urbanismos. Ingeniero de Sistemas. Universidad Señor de Sipán. Pimentel. Lambayeque. Perú. richard879@hotmail.com

Carlos Chirinos Mundaca, Universidad Señor de Sipán
Escuela de Ingeniería Sistemas. Facultad de Ingeniería Arquitectura y Urbanismos. Ingeniero Informático y de Sistemas. Universidad Señor de Sipán. Pimentel. Lambayeque. Perú. cchirinos@crece.uss.edu.pe
Publicado
2015-09-21
Sección
TECNOLOGÍAS DE INFORMACIÓN Y COMUNICACIÓN