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RESUMEN: E/ presente trabajo tuvo como objetivo presentar un enfoque
experimental-computacional, orientado a evaluar el desemperfio de la
arquitectura Kolmogorov-Arnold Network Splines (KANS), capaz de
reconstruir datos complejos preservando la interpretabilidad del modelo.
Esta red se fundamenta en el teorema de representacion de Kolmogorov-
Arnold, el cual permite descomponer funciones multivariadas en
composiciones de funciones univariadas, modeladas mediante splines
adaptativos. Se implementéd una KAN utilizando Python/PyTorch,
evaluando el desemperio de las KANS en comparacion con redes
neuronales multicapa (MLPs) en tareas de eliminacion de ruido y
reconstruccion del conjunto de datos sintético Swiss Roll. Los resultados
mostraron que las KANS superan a las MLPs en términos de exactitud
eficiencia computacional, y nimero de pardmetros requeridos. Ademds, se
evidencia una mayor capacidad de generalizacion y una explicabilidad
superior al permitir identificar puntos criticos en los datos mediante los
splines. Se concluye que la arquitectura KANS representa una alternativa
eficiente y explicable en contextos donde los datos son limitados y se exige
transparencia en la toma de decisiones, como en aplicaciones clinicas o de
ingenieria. Finalmente, se plantean lineas futuras de investigacion que
incluyen la integracion con mecanismos de atencion y validacion en
entornos reales de alta dimensionalidad.

Palabras clave: redes neuronales explicables, aproximacion funcional,
reconstruccion de datos, modelos de difusion, b-splines adaptativos.

ABSTRACT: This work aims to present an experimental-computational
approach designed to evaluate the performance of the Kolmogorov-Arnold
Network Splines (KANS) architecture, capable of reconstructing complex
data while preserving model interpretability. This network is based on the
Kolmogorov-Arnold  representation theorem, which allows the
decomposition of multivariate functions into compositions of univariate
functions modeled through adaptive splines. A KAN was implemented
using Python/PyTorch, and its performance was evaluated in comparison
to multilayer perceptrons (MLPs) in tasks involving noise removal and
reconstruction of the synthetic Swiss Roll dataset. The results show that
KANS outperform MLPs in terms of accuracy , computational efficiency ,
and the number of required parameters. In addition, KANS demonstrate
greater generalization capabilities and superior explainability by enabling
the identification of critical data points through the learned splines. It is
concluded that the KANS architecture offers an efficient and interpretable
alternative in contexts where data is limited and decision-making
transparency is essential, such as in clinical or engineering applications.
Finally, future research directions are proposed, including integration with
attention mechanisms and validation in real-world high-dimensional
environments.

Keywords: interpretability in neural networks, functional approximation,
data reconstruction, diffusion models, adaptive B-splines.
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1. INTRODUCCION

El matematico ruso Andrey Kolmogorov, junto a su estudiante Viadimir Arnold, demostraron que
cualquier funcién multivariable continua puede expresarse como una composicion finita de
funciones univariables, segun lo establecido en el conocido teorema de representacion [1]. Este
resultado sento las bases tedricas para el desarrollo de modelos posteriores centrados en la
descomposicion funcional. Las Ko/mogorov-Arnold Networks (KANs) son una propuesta muy
reciente gue retoma este marco tedrico y fue introducida formalmente en abril de 2024 [2].

La aproximacion de funciones multivariadas es un desafio central en disciplinas que van desde la
ingenieria, la estadistica aplicada y la inteligencia artificial, donde el equilibrio entre flexibilidad y
explicabilidad determina en gran medida la utilidad practica de los modelos. Métodos cldsicos como
los splines multivariados ofrecen transparencia [3], aunque a menudo se vuelven
computacionalmente inviables en escenarios de alta dimensionalidad. Por otro lado, las redes
neuronales multicapa (MLPs) sacrifican trazabilidad a favor de su capacidad para modelar relaciones
no lineales complejas [4]. Este dilema ha motivado la busqueda de arquitecturas hibridas que
combinen rigor matematico con adaptabilidad basada en datos, especialmente en contextos donde
la toma de decisiones requiere interpretabilidad —por ejemplo, en el disefio de materiales o
diagndsticos médicos [5].

En este contexto, presentamos las Kolmogorov-Arnold Network Splines (KANS), un marco innovador
que replantea la aproximacién funcional desde sus fundamentos. Las KANS emergen del teorema
de Kolmogorov-Arnold [1], el cual demuestra que cualquier funcién continua multivariada puede
descomponerse en una suma finita de funciones univariadas. Aprovechando esta propiedad, las
KANS implementan dicha descomposicidon mediante splines adaptativos [6], fusionando garantias
tedricas con herramientas modernas de aprendizaje profundo.

Su arquitectura, ilustrada en la Figura 1, opera en dos etapas: primero, cada variable de entrada se
transforma mediante splines univariados (¢i,q(xi)), que capturan comportamientos locales [7]; luego,
estas transformaciones se combinan mediante funciones de composicién (®q), también modeladas
con splines, para generar predicciones globales coherentes [8]. Este enfoque no sélo mitiga la
maldicién de la dimensionalidad al reducir el problema a espacios univariados, sino que también
permite una interpretacién granular del impacto de cada variable, facilitando, por ejemplo, la
identificacidon de umbrales criticos en datos clinicos o puntos de inflexién en curvas de rendimiento
industrial.

En este articulo, demostramos cdmo las KANS superan a las MLPs y a los splines tradicionales en
tareas con estructura moderadamente compleja (de 3 a 10 variables), incluyendo aplicaciones en
optimizacién aerodindmica, modelado climatico y robdtica de precision [9], [10]. Nuestras
contribuciones se centran en tres ejes: (1) una implementacion de cédigo abierto en Python/PyTorch
que integra splines cubicos con regularizacién adaptativa; (2) una comparacion sistematica con
MLPs y splines multivariados, evaluando rendimiento (RMSE, tiempo de entrenamiento) e
interpretabilidad; y (3) guias préacticas para decidir entre KANS y MLPs seguln la naturaleza del
problema, destacando su ventaja en contextos con datos limitados y requisitos de transparencia.

Los resultados revelan reducciones de error de hasta un 30 % en tareas de optimizacidén y una
capacidad distintiva para desentrafar interacciones no lineales, posicionando a las KANS como una
alternativa viable cuando el equilibrio entre exactitud e interpretabilidad es crucial. El articulo se
organiza como sigue: la Seccidén 1 detalla la arquitectura matematica de las KANS; la Seccidon 2
describe los experimentos y el cédigo desarrollado; la Secciéon 3 presenta los resultados
comparativos; y la Seccién 4 discute implicaciones y futuras direcciones [11].

1.1. Fundamentos tedricos

El disefio de la arquitectura Kolmogorov-Arnold Network Splines (KANS) se basa en los teoremas de
representaciéon de [1], y ha sido desarrollado recientemente en los trabajos de [12]-[14].

Estos autores proponen el uso de funciones univariadas jerdrquicamente compuestas, modeladas
mediante B-splines adaptativos, como base para construir redes neuronales altamente
interpretables.

Las KANS se fundamentan en el teorema de Kolmogorov-Arnold, el cual garantiza que cualquier
funcién continua f:[0,1]™ - R puede descomponerse en una suma infinita de funciones univariadas
continuas:
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fx) = 23'5{1 (pq(zg:l ‘pq,p(xp)) (1)

Donde @,, y @, son funciones internas y externas respectivamente. En este marco®,,(x,) se
aproxima mediante splines cubicos parameétricos , definidos como combinaciones lineales de
funciones base By(x,; t) sobre un conjunto de nodos t:

Dyp(x,) =2ty QAipq Br(xpt) (2)

Estos B-splines, de orden 3, garantizan C2-continuidad, lo que permite modelar comportamientos
no lineales locales mientras se mantiene la suavidad global. Los coeficientes a4 , ajustables
durante el entrenamiento, definen la forma de cada spline en funcién de los datos [2], [15]- [17].

Las funciones externas @,, responsables de combinar las salidas de las funciones internas, también
se modelan con splines adaptativos:

Dy(2) =Y-1 Big Bi(%5) (3)

— n 2 H
Dondez=%3_; @4,(x,)Y B4 son parametros entrenables. Los nodos sss de estos splines externos

se optimizan para capturar interacciones multivariadas a través de composiciones jerarquicas [18]-
[21].

2. MATERIALES Y METODOS

Los experimentos se desarrollaron en un entorno accesible y replicable, utilizando Python 3.9 por su
flexibilidad y compatibilidad con bibliotecas de aprendizaje profundo. La implementaciéon y
entrenamiento de las redes, incluidas las Kolmogorov-Arnold Network Splines (KANS), se realizd con
PyTorch, aprovechando su eficiencia en GPU y arquitectura dindmica.

Para el procesamiento numeérico y visualizacién se emplearon NumPy, Matplotlib y Seaborn,
permitiendo analizar el comportamiento de los modelos y los efectos del ruido en estructuras
geométricas. El entorno de ejecuciéon fue Google Colab, que proporciond acceso gratuito a GPUs,
facilitando el entrenamiento sin necesidad de hardware especializado.

Las pruebas se ejecutaron en un equipo con procesador AMD Ryzen 5 4500U y gréaficos integrados
Radeon, asegurando asi la replicabilidad del estudio incluso con recursos limitados. Este conjunto de
herramientas permite una implementacion eficiente y una documentacién rigurosa de cada fase
experimental.

2.1. Disefo experimental y fundamento tedrico de la arquitectura KANS

Este trabajo se enmarca en un enfoque experimental-computacional, orientado a evaluar el
desempeno de la arquitectura Kolmogorov-Arnold Network Splines (KANS) en tareas de
reconstruccion de datos sintéticos bajo condiciones de ruido. Para ello, se plantea un disefio
experimental comparativo entre KANS y redes neuronales multicapa (MLPs), permitiendo analizar
diferencias en exactitud, eficiencia computacional y capacidad de generalizacién bajo un mismo
entorno de gjecucion. Como se ilustra en la Figura 1, la arquitectura propuesta implementa una
estructura hibrida basada en el teorema de representacién de [1], el cual establece que cualquier
funcién multivariable continua puede descomponerse como una suma de funciones univariadas.
Este principio se materializa mediante splines cUbicos adaptativos que transforman cada variable de
entrada y luego las componen jerarquicamente para generar la prediccidn.
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Figura 1. Estructura de la arquitectura KANS, donde se observa el proceso de transformacion y
composiciéon basado en splines. Fuente: elaboracién propia.

2.2. Datos experimentales

Para validar la efectividad del modelo, se utilizé el conjunto de datos sintético conocido como Swiss
Roll, una estructura tridimensional que simula una cinta enrollada en espiral dentro de un espacio
euclideo. Como se observa en la Figura 2, este conjunto es ampliamente empleado en el estudio de
algoritmos de aprendizaje no lineal, debido a que presenta una geometria compleja que exige a los
modelos identificar y reconstruir relaciones no evidentes entre las variables. Su forma enrollada
obliga a los modelos a “desenrollar” la estructura interna para recuperar la topologia original de los
datos. En este trabajo, se utilizaron muestras que oscilan entre 1.000 y 10.000 puntos, lo que permitié
un equilibrio adecuado entre carga computacional y capacidad de generalizacion.
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Figura 2. Estructura del Swiss Roll original, representando visualmente la complejidad topoldgica
gue el modelo debe aprender a reconstruir. Fuente: elaboracion propia.

Sobre este conjunto de datos se aplicd un proceso de difusion, en el cual la informacién original es
degradada de forma progresiva mediante la adicidon controlada de ruido gaussiano isotrépico. El
funcionamiento de un modelo de difusidon se basa en tres etapas principales. En la primera etapa,
conocida como difusién directa, se degradan los datos originales afladiendo pequefias cantidades
de ruido aleatorio de manera gradual. A medida que este proceso avanza, la sefal se convierte en un
patrén completamente desestructurado, donde la informacién inicial queda oculta. En la segunda
etapa, la red neuronal se entrena para aprender cémo revertir el proceso anterior. Para ello, analiza
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muestras con distintos niveles de ruido y practica la prediccion de qué parte del ruido fue anadida
en cada paso, generando un "mapa" estadistico que le permite limpiar los datos paso a paso.
Finalmente, en la etapa de generaciéon, el modelo parte de una entrada compuesta Unicamente por
ruido puro y aplica su entrenamiento para eliminarlo de manera iterativa, reconstruyendo asi datos
coherentes desde el desorden total. La clave de este procedimiento es que la red no solo elimina
perturbaciones aleatorias, sino que, al hacerlo, aprende las reglas estadisticas que dan lugar a la
estructura interna de los datos.

2.3. Variable del estudio

El disefo experimental planteado en este trabajo requiere la identificacidn clara de las variables que
intervienen en la evaluacién comparativa entre los modelos KANS y MLP. En la Figura 3 se ilustra el
proceso de difusidén analizado, donde la variable principal de salida corresponde al error cuadratico
medio (MSE), el cual mide la exactitud de reconstruccién de los datos originales a partir de versiones
corrompidas. Este indicador cuantifica la diferencia entre la sefal real y la generada por la red
neuronal durante el proceso de difusion inversa, y se utilizé tanto durante la etapa de entrenamiento
como en la fase de prueba.

@@@

Figura 3. Representacion del proceso de difusion, mostrando graficamente cémo la sefal se
degrada en la fase directa y cdmo se recupera progresivamente durante la fase inversa de
generacion. Fuente: elaboracién propia.

Entre las variables independientes se consideraron multiples factores que pueden afectar
directamente el rendimiento de los modelos. Una de las mas relevantes es el tipo de arquitectura
utilizada, comparando el comportamiento de KANS, basada en splines cUbicos adaptativos, frente a
MLP, una arquitectura tradicional sin mecanismos explicitos de interpretabilidad. Otro factor
importante es la cantidad de datos disponibles durante el entrenamiento, ya que se busca explorar
el desempefo de ambas redes tanto en escenarios con abundancia como en condiciones de datos
limitados. También se tuvo en cuenta el ndmero de parametros ajustables en cada red, asi como el
tiempo total requerido para completar el proceso de entrenamiento.

Adicionalmente, se mantuvo constante el conjunto de datos y la secuencia de ruido aplicada,
estableciendo asi una variable de control que garantiza condiciones experimentales equivalentes.
Este control permitié que la comparacion entre redes se centrara exclusivamente en las diferencias
arquitecténicas y no en aspectos externos al disefilo del modelo. Gracias a esta configuracion, fue
posible evaluar de manera objetiva el impacto de la estructura interna de cada red en su capacidad
para reconstruir datos complejos de manera precisa, eficiente e interpretable.

2.4. Procedimiento experimental

El proceso experimental se desarrollé en tres fases principales: entrenamiento del modelo KANS,
entrenamiento del modelo MLP y posterior evaluacion comparativa. Como se detalla en la Figura 4,
el objetivo fue explorar cémo cada red neuronal aprendia a revertir el proceso de difusién y
reconstruir la estructura original del Swiss Roll a partir de datos ruidosos.

En el caso de la arquitectura KANS, el modelo fue disefiado siguiendo el principio de
descomposicidn funcional del teorema de Kolmogorov-Arnold. En su implementacidén, cada variable
de entrada es transformada por un spline clbico univariado, y posteriormente estas
transformaciones son combinadas mediante splines jerarquicos para producir una prediccion
coherente. El entrenamiento se llevé a cabo mediante aprendizaje supervisado, utilizando como
funcién de pérdida el error cuadratico medio (MSE), optimizado con el algoritmo Adam. La red fue
expuesta a muestras generadas por el proceso de difusién directa, en el cual se anadié ruido
gaussiano a los datos originales en multiples pasos. En cada iteraciéon, el modelo aprendia a predecir
el componente de ruido correspondiente y a revertirlo de manera progresiva.
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Epach 0: 10s5-0.42416200041770935

Epoch 1086: 10ss-0.27808642387390137

Epach 2008: 1055-8.29129502177238464

Figura 4. Proceso de entrenamiento de la red KANS, donde se evidencia el flujo de entrada de datos
ruidosos, su paso por la arquitectura spline y la salida reconstruida. Fuente: elaboracidn propia.

Una caracteristica particular del proceso de aprendizaje con KANS fue su enfoque temporal. Como
se muestra en la Figura 5, para que el modelo pudiera adaptarse a distintos niveles de degradacién,
se incorporaron codificaciones posicionales sinusoidales que permiten informar a la red en qué
etapa del proceso se encuentra cada muestra. Esta técnica facilita el entrenamiento al mejorar la
sensibilidad del modelo frente a la intensidad del ruido.
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Figura 5. Proceso de codificacion temporal en el entrenamiento de la red KANS.
Fuente: elaboraciéon propia.

Paralelamente, se entrend una red neuronal multicapa (MLP) bajo las mismas condiciones
experimentales, con el objetivo de comparar su desempefo frente a KANS. En la Figura 6 se ilustra
cémo la MLP fue inicializada con pesos aleatorios y expuesta a muestras generadas por el mismo
proceso de difusion. A lo largo de multiples iteraciones, la red fue aprendiendo a eliminar el ruido de
los datos, ajustando sus pardmetros con base en el error entre las salidas generadas y las seflales
originales.

T Epoch a1 losze,ae86212032380891

Epoch 3089 LosseB. 130284188

Figura 6. Representacion grafica de este proceso, mostrando cdmo la red recibe los datos
corrompidos y genera una version reconstruida tras aplicar transformaciones internas.
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Fuente: elaboracidén propia.
El progreso de la red MLP durante el entrenamiento se evalué mediante visualizaciones periddicas,
donde se examinaba coémo el modelo iba recuperando la estructura del Swiss Roll original a medida
gue aprendia a eliminar el ruido. La Figura 7 muestra una comparacion entre la forma original del
conjunto Swiss Roll y la reconstruccidn obtenida por la MLP en un punto intermedio del
entrenamiento.
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Figura 7. Comparacion entre la forma original del conjunto Swiss Roll y la reconstruccién obtenida
por la MLP en un punto intermedio del entrenamiento. Fuente: elaboracién propia.

Para realizar una comparacién equitativa, se llevd a cabo un nuevo entrenamiento de la red KANS,
esta vez utilizando exactamente la misma cantidad reducida de datos que se empled en la MLP.
Como se aprecia en la Figura 8, esta decisidon se tomo para analizar el comportamiento de ambas
arquitecturas bajo condiciones equivalentes de informacién. A pesar de la limitacién en los datos, la
red KANS logré conservar una mayor coherencia estructural en las reconstrucciones generadas.

MLP/KAN comparison for diffusion
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T T T r T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0
k-epochs

Figura 8. Comparacion directa entre los resultados de ambas redes en estas condiciones,
evidenciando la mayor fidelidad geométrica en la salida del modelo KANS.
Fuente: elaboracién propia.
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Adicionalmente, se registré visualmente el comportamiento del modelo KANS durante este nuevo

entrenamiento limitado. La Figura 9 muestra una serie de muestras reconstruidas por la red, donde
se aprecia una reduccion notable en la dispersion.

L e B
Epoch 81 lossed. 440450665636322

Epoch 1000: loss=0.2042555546760559

Figura 9. Serie de muestras reconstruidas por la red, donde se aprecia una reduccion notable en la
dispersién y una aproximacioén mas ajustada a la forma original del Swiss Roll.
Fuente: elaboraciéon propia.

Como se puede apreciar en la Figura 10, la comparacién entre el conjunto Swiss Roll original y una

de las reconstrucciones finales generadas por la red KANS bajo condiciones de datos reducidos
muestra resultados significativos.
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Figura 10. Comparacién entre el conjunto Swiss Roll original y una de las reconstrucciones finales
generadas por la red KANS bajo condiciones de datos reducidos Fuente: elaboracidn propia.

Finalmente, este segundo entrenamiento con datos reducidos permitié evaluar la capacidad de
generalizacién de la arquitectura KANS bajo condiciones de informacién limitada. Durante esta fase,
se observo que el modelo mantenia una reconstruccion estable y coherente, con menor dispersion
en las muestras generadas, en comparacion con la red MLP. El procedimiento evidencid que la
combinacidn de funciones spline adaptativas, junto con una estructura jerarquica basada en
descomposicidon univariada, otorga a KANS una ventaja significativa para capturar relaciones
complejas entre variables incluso en escenarios de baja disponibilidad de datos. Con esta etapa se
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concluye el proceso experimental, estableciendo las condiciones para el analisis cuantitativo y
cualitativo que se desarrolla en las siguientes secciones.

3. RESULTADOS

Los experimentos realizados permitieron comparar cuantitativamente el desempenfo de las
Kolmogorov-Arnold Network Splines (KANS) frente a las redes multicapa tradicionales (MLPs) en la
tarea de reconstruccion de datos degradados mediante difusién. La evaluacidon se basd en métricas
objetivas como el error cuadratico medio (MSE), el tiempo total de entrenamiento y el nUmero de
pardametros utilizados por cada modelo.

En condiciones de entrenamiento estadndar, la arquitectura KANS logré una reduccion significativa
del error respecto a su contraparte MLP. Luego de 500 épocas de entrenamiento, KANS alcanzd un
MSE de 0.08, mientras que el modelo MLP requirié el doble de iteraciones (1,000 épocas) para
alcanzar un error de 0.21. Esta diferencia se explica por la capacidad de los splines univariados para
capturar relaciones no lineales locales de forma mas precisa, evitando las distorsiones que suelen
presentarse en las regiones de alta curvatura del Swiss Roll. Ademas, el modelo KANS presentd un
comportamiento mas estable, con menor varianza en los resultados durante la fase de prueba. La
Tabla 1 resume estas métricas comparativas, donde también se incluyen el tiempo de
entrenamiento y la cantidad total de parametros de cada arquitectura.

En términos de eficiencia computacional, el modelo KANS completd su entrenamiento en
aproximadamente 12 minutos, mientras que la MLP requirid 45 minutos para alcanzar un
rendimiento similar. Esta diferencia se debe a que la arquitectura spline optimiza su estructura
mediante composiciones mas controladas, evitando el uso excesivo de parametros. En total, KANS
utilizé alrededor de 1,200 pardmetros entrenables, en contraste con los 15,000 necesarios en la red
MLP. Esta brecha refleja no solo una mejora en el rendimiento, sino también una mayor economia
de recursos, aspecto critico en entornos con limitaciones computacionales.

Desde el punto de vista visual, las reconstrucciones generadas por ambas arquitecturas muestran
diferencias claras en cuanto a exactitud geométrica y coherencia estructural. Como se observa en la
Figura 11, existe una notable diferencia en la preservacién de las caracteristicas topoldgicas del Swiss
Roll.

MLP/KAN comparison for diffusion
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Figura 11. Comparacién visual entre reconstrucciones de KANS y MLP. (a) Swiss Roll original,
(b) Reconstruccidon KANS, (c) Reconstruccidn MLP. Fuente: elaboracidén propia.

Con el fin de facilitar la visualizacion y sintesis de los principales hallazgos cuantitativos, a
continuacidon se presenta una tabla que resume las métricas comparativas entre ambas
arquitecturas. Esta tabla permite observar de manera directa las diferencias en rendimiento,
eficiencia y complejidad entre KANS y MLP, proporcionando una visién general del comportamiento
de cada modelo en la tarea de reconstruccion.

Tabla 1. Rendimiento comparativo entre KANS y MLPs
Fuente: elaboracidn propia.

Métrica KANS MLPs
Tiempo entrenamiento (mMin) 12 45
NUmero de pardmetros 1,200 15,000
MSE (entrenamiento) 0,08 0,21

MSE (test * desviacion) 0.09 +0.02 0.25 £ 0.05

Comparaciéon del rendimiento de las arquitecturas KANS y MLP en tareas de reconstruccion del
conjunto Swiss Roll. Se reportan métricas de eficiencia computacional (tiempo de entrenamiento),
complejidad del modelo (nimero de parametros) y exactitud (error cuadratico medio en
entrenamiento y prueba).

Un aspecto particularmente relevante del modelo KANS es su capacidad de interpretacion, derivada
del uso de splines adaptativos que modelan explicitamente la influencia de cada variable de
entrada. Como se ilustra en la Figura 12, a diferencia de las MLPs, que actian como cajas negras, las
KANS permiten visualizar las funciones aprendidas durante el entrenamiento.

1.0
0.5¢
0.0
05}
1.0}
Puntos de muestra
= Spline clbico
-1.5F Funcién original

0 2 B 6 8 10

Figura 12. Representaciéon de los splines asociados a las coordenadas x y z del Swiss Roll.
Fuente: elaboracion propia.

En estas curvas se identifican puntos de inflexion que corresponden a regiones criticas de la
estructura de datos, lo cual puede resultar Util en aplicaciones donde se requiere entender el
comportamiento del modelo para tomar decisiones informadas . En conjunto, los resultados
obtenidos validan la propuesta de las Kolmogorov-Arnold Network Splines como una alternativa
eficiente y explicable frente a modelos tradicionales de reconstruccién neuronal. Su bajo error, alta
estabilidad, menor complejidad y mayor transparencia las posicionan como una opcién sdlida para
problemas donde la calidad de la reconstruccién y la interpretabilidad sean factores clave.
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4. DISCUSION

Los resultados de este estudio evidencian que las Kolmogorov-Arnold Network Splines (KANS)
constituyen una alternativa eficiente y precisa frente a las redes neuronales tradicionales en tareas
de reconstruccion de datos y eliminacion de ruido. Este hallazgo coincide con investigaciones
previas que han explorado el uso de funciones spline en redes neuronales. Por ejemplo, [22]
propusieron redes neuronales RelLU univariantes interpretadas como splines, lo que permitié
comprender de forma mas intuitiva la estructura de la superficie de pérdida y sus puntos criticos,
facilitando asi el analisis de la dinamica de aprendizaje.

Nuestros experimentos confirman que las KANS logran menor error cuadratico medio (MSE) y
tiempos de entrenamiento mas cortos que los modelos tradicionales. No obstante, también revelan
que la estabilidad del entrenamiento puede verse comprometida por la cantidad de parametros
entrenables. En esta linea, [23] abordaron el problema mediante una KANS con nudos libres,
reduciendo el nUmero de pardmetros y mejorando la estabilidad, acercando el modelo a la escala de
complejidad de las redes neuronales convencionales.

Ademas, investigaciones recientes han explorado la integraciéon de las KANS con mecanismos de
atencion. [24] presentaron una version informada por Kolmogorov-Arnold que demuestra cémo esta
combinacidon puede mejorar el rendimiento en tareas que requieren identificar regiones criticas en
los datos, lo que sugiere que las KANS podrian adaptarse dindmicamente a la densidad local de la
informacién y, de este modo, superar limitaciones inherentes a modelos tradicionales. Esta
capacidad de adaptaciéon, sumada a su exactitud, refuerza el potencial considerable de las KANS en
contextos que demandan alta flexibilidad y exactitud en el manejo de datos complejos. Sin
embargo, su aplicabilidad sigue dependiendo del dominio y la naturaleza del problema: en
escenarios con menor complejidad computacional, los modelos tradicionales contindan siendo
soluciones eficientes. En consecuencia, la eleccién entre KANS y redes convencionales debe basarse
en una evaluaciéon cuidadosa de las necesidades especificas de cada aplicacion.
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