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RESUMEN: El presente trabajo tuvo como objetivo presentar un enfoque 
experimental-computacional, orientado a evaluar el desempeño de la 
arquitectura Kolmogorov-Arnold Network Splines (KANS), capaz de 
reconstruir datos complejos preservando la interpretabilidad del modelo. 
Esta red se fundamenta en el teorema de representación de Kolmogorov-
Arnold, el cual permite descomponer funciones multivariadas en 
composiciones de funciones univariadas, modeladas mediante splines 
adaptativos. Se implementó una  KAN utilizando Python/PyTorch, 
evaluando el desempeño de las KANS en comparación con redes 
neuronales multicapa (MLPs) en tareas de eliminación de ruido y 
reconstrucción del conjunto de datos sintético Swiss Roll. Los resultados 
mostraron que las  KANS superan a las MLPs en términos de exactitud 
eficiencia computacional , y número de parámetros requeridos. Además, se 
evidencia una mayor capacidad de generalización y una explicabilidad 
superior al permitir identificar puntos críticos en los datos mediante los 
splines. Se concluye que la arquitectura KANS representa una alternativa 
eficiente y explicable en contextos donde los datos son limitados y se exige 
transparencia en la toma de decisiones, como en aplicaciones clínicas o de 
ingeniería. Finalmente, se plantean líneas futuras de investigación que 
incluyen la integración con mecanismos de atención y validación en 
entornos reales de alta dimensionalidad. 

Palabras clave: redes neuronales explicables, aproximación funcional, 
reconstrucción de datos, modelos de difusión, b-splines adaptativos. 

ABSTRACT: This work aims to present an experimental-computational 
approach designed to evaluate the performance of the Kolmogorov-Arnold 
Network Splines (KANS) architecture, capable of reconstructing complex 
data while preserving model interpretability. This network is based on the 
Kolmogorov–Arnold representation theorem, which allows the 
decomposition of multivariate functions into compositions of univariate 
functions modeled through adaptive splines. A KAN was implemented 
using Python/PyTorch, and its performance was evaluated in comparison 
to multilayer perceptrons (MLPs) in tasks involving noise removal and 
reconstruction of the synthetic Swiss Roll dataset. The results show that 
KANS outperform MLPs in terms of accuracy , computational efficiency , 
and the number of required parameters. In addition, KANS demonstrate 
greater generalization capabilities and superior explainability by enabling 
the identification of critical data points through the learned splines. It is 
concluded that the KANS architecture offers an efficient and interpretable 
alternative in contexts where data is limited and decision-making 
transparency is essential, such as in clinical or engineering applications. 
Finally, future research directions are proposed, including integration with 
attention mechanisms and validation in real-world high-dimensional 
environments.  

Keywords: interpretability in neural networks, functional approximation, 
data reconstruction, diffusion models, adaptive B-splines. 
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1. INTRODUCCIÓN 
 
El matemático ruso Andrey Kolmogorov, junto a su estudiante Vladimir Arnold, demostraron que 
cualquier función multivariable continua puede expresarse como una composición finita de 
funciones univariables, según lo establecido en el conocido teorema de representación [1]. Este 
resultado sentó las bases teóricas para el desarrollo de modelos posteriores centrados en la 
descomposición funcional. Las Kolmogorov-Arnold Networks (KANs) son una propuesta muy 
reciente que retoma este marco teórico y fue introducida formalmente en abril de 2024 [2]. 

La aproximación de funciones multivariadas es un desafío central en disciplinas que van desde la 
ingeniería, la estadística aplicada y la inteligencia artificial, donde el equilibrio entre flexibilidad y 
explicabilidad determina en gran medida la utilidad práctica de los modelos. Métodos clásicos como 
los splines multivariados ofrecen transparencia [3], aunque a menudo se vuelven 
computacionalmente inviables en escenarios de alta dimensionalidad. Por otro lado, las redes 
neuronales multicapa (MLPs) sacrifican trazabilidad a favor de su capacidad para modelar relaciones 
no lineales complejas [4]. Este dilema ha motivado la búsqueda de arquitecturas híbridas que 
combinen rigor matemático con adaptabilidad basada en datos, especialmente en contextos donde 
la toma de decisiones requiere interpretabilidad —por ejemplo, en el diseño de materiales o 
diagnósticos médicos [5]. 

En este contexto, presentamos las Kolmogorov-Arnold Network Splines (KANS), un marco innovador 
que replantea la aproximación funcional desde sus fundamentos. Las KANS emergen del teorema 
de Kolmogorov-Arnold [1], el cual demuestra que cualquier función continua multivariada puede 
descomponerse en una suma finita de funciones univariadas. Aprovechando esta propiedad, las 
KANS implementan dicha descomposición mediante splines adaptativos [6], fusionando garantías 
teóricas con herramientas modernas de aprendizaje profundo. 

Su arquitectura, ilustrada en la Figura 1, opera en dos etapas: primero, cada variable de entrada se 
transforma mediante splines univariados (ϕi,q(xi)), que capturan comportamientos locales [7]; luego, 
estas transformaciones se combinan mediante funciones de composición (Φq), también modeladas 
con splines, para generar predicciones globales coherentes [8]. Este enfoque no sólo mitiga la 
maldición de la dimensionalidad al reducir el problema a espacios univariados, sino que también 
permite una interpretación granular del impacto de cada variable, facilitando, por ejemplo, la 
identificación de umbrales críticos en datos clínicos o puntos de inflexión en curvas de rendimiento 
industrial. 

En este artículo, demostramos cómo las KANS superan a las MLPs y a los splines tradicionales en 
tareas con estructura moderadamente compleja (de 3 a 10 variables), incluyendo aplicaciones en 
optimización aerodinámica, modelado climático y robótica de precisión [9], [10]. Nuestras 
contribuciones se centran en tres ejes: (1) una implementación de código abierto en Python/PyTorch 
que integra splines cúbicos con regularización adaptativa; (2) una comparación sistemática con 
MLPs y splines multivariados, evaluando rendimiento (RMSE, tiempo de entrenamiento) e 
interpretabilidad; y (3) guías prácticas para decidir entre KANS y MLPs según la naturaleza del 
problema, destacando su ventaja en contextos con datos limitados y requisitos de transparencia. 

Los resultados revelan reducciones de error de hasta un 30 % en tareas de optimización y una 
capacidad distintiva para desentrañar interacciones no lineales, posicionando a las KANS como una 
alternativa viable cuando el equilibrio entre exactitud e interpretabilidad es crucial. El artículo se 
organiza como sigue: la Sección 1 detalla la arquitectura matemática de las KANS; la Sección 2 
describe los experimentos y el código desarrollado; la Sección 3 presenta los resultados 
comparativos; y la Sección 4 discute implicaciones y futuras direcciones [11]. 

 
1.1. Fundamentos teóricos 

 
El diseño de la arquitectura Kolmogorov–Arnold Network Splines (KANS) se basa en los teoremas de 
representación de [1], y ha sido desarrollado recientemente en los trabajos de [12]-[14]. 

Estos autores proponen el uso de funciones univariadas jerárquicamente compuestas, modeladas 
mediante B-splines adaptativos, como base para construir redes neuronales altamente 
interpretables. 

Las KANS se fundamentan en el teorema de Kolmogorov-Arnold, el cual garantiza que cualquier 
función continua 𝒇: [𝟎, 𝟏]𝒏 → 𝑹 puede descomponerse en una suma infinita de funciones univariadas 
continuas:  
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𝒇(𝒙) = ∑𝟐𝒏+𝟏
𝒒=𝟏 𝜱𝒒(∑𝒏

𝒑=𝟏 𝜱𝒒,𝒑(𝒙𝒑))     (1) 

 

Donde 𝜱𝒒,𝒑 y 𝜱𝒒 son funciones internas y externas respectivamente. En este marco𝜱𝒒,𝒑(𝒙𝒑) se 
aproxima mediante splines cúbicos paramétricos , definidos como combinaciones lineales de 
funciones base 𝑩𝒌(𝒙𝒑; 𝒕) 𝒔𝒐𝒃𝒓𝒆 𝒖𝒏 𝒄𝒐𝒏𝒋𝒖𝒏𝒕𝒐 𝒅𝒆 𝒏𝒐𝒅𝒐𝒔 𝒕: 

 
𝜱𝒒,𝒑(𝒙𝒑) = ∑𝒎

𝒌=𝟏 𝜶𝒌,𝒑,𝒒 ∙ 𝑩𝒌(𝒙𝒑; 𝒕)    (2) 
 

Estos B-splines, de orden 3, garantizan C2-continuidad, lo que permite modelar comportamientos 
no lineales locales mientras se mantiene la suavidad global. Los coeficientes 𝜶𝒌,𝒑,𝒒 , ajustables 
durante el entrenamiento, definen la forma de cada spline en función de los datos [2], [15]- [17]. 

 

Las funciones externas 𝜱𝒒, responsables de combinar las salidas de las funciones internas, también 
se modelan con splines adaptativos: 

 
𝜱𝒒(𝒁) = ∑𝒓

𝒍=𝟏 𝑩𝒍,𝒒 ∙ 𝑩𝒍(𝒛; 𝒔)    (3) 
 

Donde 𝒛 = ∑𝒏
𝒑=𝟏 𝜱𝒒.𝒑(𝒙𝒑) y 𝑩𝒍,𝒒 son parámetros entrenables. Los nodos sss de estos splines externos 

se optimizan para capturar interacciones multivariadas a través de composiciones jerárquicas [18]-
[21]. 

 

 

2. MATERIALES Y MÉTODOS 
 
Los experimentos se desarrollaron en un entorno accesible y replicable, utilizando Python 3.9 por su 
flexibilidad y compatibilidad con bibliotecas de aprendizaje profundo. La implementación y 
entrenamiento de las redes, incluidas las Kolmogorov-Arnold Network Splines (KANS), se realizó con 
PyTorch, aprovechando su eficiencia en GPU y arquitectura dinámica. 

Para el procesamiento numérico y visualización se emplearon NumPy, Matplotlib y Seaborn, 
permitiendo analizar el comportamiento de los modelos y los efectos del ruido en estructuras 
geométricas. El entorno de ejecución fue Google Colab, que proporcionó acceso gratuito a GPUs, 
facilitando el entrenamiento sin necesidad de hardware especializado. 

Las pruebas se ejecutaron en un equipo con procesador AMD Ryzen 5 4500U y gráficos integrados 
Radeon, asegurando así la replicabilidad del estudio incluso con recursos limitados. Este conjunto de 
herramientas permite una implementación eficiente y una documentación rigurosa de cada fase 
experimental. 

2.1. Diseño experimental y fundamento teórico de la arquitectura KANS 
 

Este trabajo se enmarca en un enfoque experimental-computacional, orientado a evaluar el 
desempeño de la arquitectura Kolmogorov-Arnold Network Splines (KANS) en tareas de 
reconstrucción de datos sintéticos bajo condiciones de ruido. Para ello, se plantea un diseño 
experimental comparativo entre KANS y redes neuronales multicapa (MLPs), permitiendo analizar 
diferencias en exactitud, eficiencia computacional y capacidad de generalización bajo un mismo 
entorno de ejecución. Como se ilustra en la Figura 1, la arquitectura propuesta implementa una 
estructura híbrida basada en el teorema de representación de [1], el cual establece que cualquier 
función multivariable continua puede descomponerse como una suma de funciones univariadas. 
Este principio se materializa mediante splines cúbicos adaptativos que transforman cada variable de 
entrada y luego las componen jerárquicamente para generar la predicción. 
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Figura 1. Estructura de la arquitectura KANS, donde se observa el proceso de transformación y 
composición basado en splines. Fuente: elaboración propia. 

2.2. Datos experimentales 
 

Para validar la efectividad del modelo, se utilizó el conjunto de datos sintético conocido como Swiss 
Roll, una estructura tridimensional que simula una cinta enrollada en espiral dentro de un espacio 
euclídeo. Como se observa en la Figura 2, este conjunto es ampliamente empleado en el estudio de 
algoritmos de aprendizaje no lineal, debido a que presenta una geometría compleja que exige a los 
modelos identificar y reconstruir relaciones no evidentes entre las variables. Su forma enrollada 
obliga a los modelos a “desenrollar” la estructura interna para recuperar la topología original de los 
datos. En este trabajo, se utilizaron muestras que oscilan entre 1.000 y 10.000 puntos, lo que permitió 
un equilibrio adecuado entre carga computacional y capacidad de generalización. 

 

Figura 2. Estructura del Swiss Roll original, representando visualmente la complejidad topológica 
que el modelo debe aprender a reconstruir. Fuente: elaboración propia. 

Sobre este conjunto de datos se aplicó un proceso de difusión, en el cual la información original es 
degradada de forma progresiva mediante la adición controlada de ruido gaussiano isotrópico. El 
funcionamiento de un modelo de difusión se basa en tres etapas principales. En la primera etapa, 
conocida como difusión directa, se degradan los datos originales añadiendo pequeñas cantidades 
de ruido aleatorio de manera gradual. A medida que este proceso avanza, la señal se convierte en un 
patrón completamente desestructurado, donde la información inicial queda oculta. En la segunda 
etapa, la red neuronal se entrena para aprender cómo revertir el proceso anterior. Para ello, analiza 
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muestras con distintos niveles de ruido y práctica la predicción de qué parte del ruido fue añadida 
en cada paso, generando un "mapa" estadístico que le permite limpiar los datos paso a paso. 
Finalmente, en la etapa de generación, el modelo parte de una entrada compuesta únicamente por 
ruido puro y aplica su entrenamiento para eliminarlo de manera iterativa, reconstruyendo así datos 
coherentes desde el desorden total. La clave de este procedimiento es que la red no solo elimina 
perturbaciones aleatorias, sino que, al hacerlo, aprende las reglas estadísticas que dan lugar a la 
estructura interna de los datos. 

2.3. Variable del estudio 
 
El diseño experimental planteado en este trabajo requiere la identificación clara de las variables que 
intervienen en la evaluación comparativa entre los modelos KANS y MLP. En la Figura 3 se ilustra el 
proceso de difusión analizado, donde la variable principal de salida corresponde al error cuadrático 
medio (MSE), el cual mide la exactitud de reconstrucción de los datos originales a partir de versiones 
corrompidas. Este indicador cuantifica la diferencia entre la señal real y la generada por la red 
neuronal durante el proceso de difusión inversa, y se utilizó tanto durante la etapa de entrenamiento 
como en la fase de prueba. 

 

Figura 3. Representación del proceso de difusión, mostrando gráficamente cómo la señal se 
degrada en la fase directa y cómo se recupera progresivamente durante la fase inversa de 

generación. Fuente: elaboración propia. 

Entre las variables independientes se consideraron múltiples factores que pueden afectar 
directamente el rendimiento de los modelos. Una de las más relevantes es el tipo de arquitectura 
utilizada, comparando el comportamiento de KANS, basada en splines cúbicos adaptativos, frente a 
MLP, una arquitectura tradicional sin mecanismos explícitos de interpretabilidad. Otro factor 
importante es la cantidad de datos disponibles durante el entrenamiento, ya que se busca explorar 
el desempeño de ambas redes tanto en escenarios con abundancia como en condiciones de datos 
limitados. También se tuvo en cuenta el número de parámetros ajustables en cada red, así como el 
tiempo total requerido para completar el proceso de entrenamiento. 

Adicionalmente, se mantuvo constante el conjunto de datos y la secuencia de ruido aplicada, 
estableciendo así una variable de control que garantiza condiciones experimentales equivalentes. 
Este control permitió que la comparación entre redes se centrara exclusivamente en las diferencias 
arquitectónicas y no en aspectos externos al diseño del modelo. Gracias a esta configuración, fue 
posible evaluar de manera objetiva el impacto de la estructura interna de cada red en su capacidad 
para reconstruir datos complejos de manera precisa, eficiente e interpretable. 

2.4. Procedimiento experimental 
 
El proceso experimental se desarrolló en tres fases principales: entrenamiento del modelo KANS, 
entrenamiento del modelo MLP y posterior evaluación comparativa. Como se detalla en la Figura 4, 
el objetivo fue explorar cómo cada red neuronal aprendía a revertir el proceso de difusión y 
reconstruir la estructura original del Swiss Roll a partir de datos ruidosos. 

En el caso de la arquitectura KANS, el modelo fue diseñado siguiendo el principio de 
descomposición funcional del teorema de Kolmogorov-Arnold. En su implementación, cada variable 
de entrada es transformada por un spline cúbico univariado, y posteriormente estas 
transformaciones son combinadas mediante splines jerárquicos para producir una predicción 
coherente. El entrenamiento se llevó a cabo mediante aprendizaje supervisado, utilizando como 
función de pérdida el error cuadrático medio (MSE), optimizado con el algoritmo Adam. La red fue 
expuesta a muestras generadas por el proceso de difusión directa, en el cual se añadió ruido 
gaussiano a los datos originales en múltiples pasos. En cada iteración, el modelo aprendía a predecir 
el componente de ruido correspondiente y a revertirlo de manera progresiva. 
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Figura 4. Proceso de entrenamiento de la red KANS, donde se evidencia el flujo de entrada de datos 
ruidosos, su paso por la arquitectura spline y la salida reconstruida. Fuente: elaboración propia. 

Una característica particular del proceso de aprendizaje con KANS fue su enfoque temporal. Como 
se muestra en la Figura 5, para que el modelo pudiera adaptarse a distintos niveles de degradación, 
se incorporaron codificaciones posicionales sinusoidales que permiten informar a la red en qué 
etapa del proceso se encuentra cada muestra. Esta técnica facilita el entrenamiento al mejorar la 
sensibilidad del modelo frente a la intensidad del ruido. 

 

Figura 5. Proceso de codificación temporal en el entrenamiento de la red KANS. 
Fuente: elaboración propia. 

 
Paralelamente, se entrenó una red neuronal multicapa (MLP) bajo las mismas condiciones 
experimentales, con el objetivo de comparar su desempeño frente a KANS. En la Figura 6 se ilustra 
cómo la MLP fue inicializada con pesos aleatorios y expuesta a muestras generadas por el mismo 
proceso de difusión. A lo largo de múltiples iteraciones, la red fue aprendiendo a eliminar el ruido de 
los datos, ajustando sus parámetros con base en el error entre las salidas generadas y las señales 
originales. 

 

Figura 6. Representación gráfica de este proceso, mostrando cómo la red recibe los datos 
corrompidos y genera una versión reconstruida tras aplicar transformaciones internas. 
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Fuente: elaboración propia. 
El progreso de la red MLP durante el entrenamiento se evaluó mediante visualizaciones periódicas, 
donde se examinaba cómo el modelo iba recuperando la estructura del Swiss Roll original a medida 
que aprendía a eliminar el ruido. La Figura 7 muestra una comparación entre la forma original del 
conjunto Swiss Roll y la reconstrucción obtenida por la MLP en un punto intermedio del 
entrenamiento. 

 

Figura 7. Comparación entre la forma original del conjunto Swiss Roll y la reconstrucción obtenida 
por la MLP en un punto intermedio del entrenamiento. Fuente: elaboración propia. 

Para realizar una comparación equitativa, se llevó a cabo un nuevo entrenamiento de la red KANS, 
esta vez utilizando exactamente la misma cantidad reducida de datos que se empleó en la MLP. 
Como se aprecia en la Figura 8, esta decisión se tomó para analizar el comportamiento de ambas 
arquitecturas bajo condiciones equivalentes de información. A pesar de la limitación en los datos, la 
red KANS logró conservar una mayor coherencia estructural en las reconstrucciones generadas. 

 

Figura 8. Comparación directa entre los resultados de ambas redes en estas condiciones, 
evidenciando la mayor fidelidad geométrica en la salida del modelo KANS. 

Fuente: elaboración propia. 
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Adicionalmente, se registró visualmente el comportamiento del modelo KANS durante este nuevo 
entrenamiento limitado. La Figura 9 muestra una serie de muestras reconstruidas por la red, donde 
se aprecia una reducción notable en la dispersión. 

 

Figura 9. Serie de muestras reconstruidas por la red, donde se aprecia una reducción notable en la 
dispersión y una aproximación más ajustada a la forma original del Swiss Roll. 

Fuente: elaboración propia. 
 

Como se puede apreciar en la Figura 10, la comparación entre el conjunto Swiss Roll original y una 
de las reconstrucciones finales generadas por la red KANS bajo condiciones de datos reducidos 
muestra resultados significativos. 

 

Figura 10. Comparación entre el conjunto Swiss Roll original y una de las reconstrucciones finales 
generadas por la red KANS bajo condiciones de datos reducidos Fuente: elaboración propia. 

Finalmente, este segundo entrenamiento con datos reducidos permitió evaluar la capacidad de 
generalización de la arquitectura KANS bajo condiciones de información limitada. Durante esta fase, 
se observó que el modelo mantenía una reconstrucción estable y coherente, con menor dispersión 
en las muestras generadas, en comparación con la red MLP. El procedimiento evidenció que la 
combinación de funciones spline adaptativas, junto con una estructura jerárquica basada en 
descomposición univariada, otorga a KANS una ventaja significativa para capturar relaciones 
complejas entre variables incluso en escenarios de baja disponibilidad de datos. Con esta etapa se 
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concluye el proceso experimental, estableciendo las condiciones para el análisis cuantitativo y 
cualitativo que se desarrolla en las siguientes secciones. 

 
3. RESULTADOS 

Los experimentos realizados permitieron comparar cuantitativamente el desempeño de las 
Kolmogorov-Arnold Network Splines (KANS) frente a las redes multicapa tradicionales (MLPs) en la 
tarea de reconstrucción de datos degradados mediante difusión. La evaluación se basó en métricas 
objetivas como el error cuadrático medio (MSE), el tiempo total de entrenamiento y el número de 
parámetros utilizados por cada modelo. 

En condiciones de entrenamiento estándar, la arquitectura KANS logró una reducción significativa 
del error respecto a su contraparte MLP. Luego de 500 épocas de entrenamiento, KANS alcanzó un 
MSE de 0.08, mientras que el modelo MLP requirió el doble de iteraciones (1,000 épocas) para 
alcanzar un error de 0.21. Esta diferencia se explica por la capacidad de los splines univariados para 
capturar relaciones no lineales locales de forma más precisa, evitando las distorsiones que suelen 
presentarse en las regiones de alta curvatura del Swiss Roll. Además, el modelo KANS presentó un 
comportamiento más estable, con menor varianza en los resultados durante la fase de prueba. La 
Tabla 1 resume estas métricas comparativas, donde también se incluyen el tiempo de 
entrenamiento y la cantidad total de parámetros de cada arquitectura. 

En términos de eficiencia computacional, el modelo KANS completó su entrenamiento en 
aproximadamente 12 minutos, mientras que la MLP requirió 45 minutos para alcanzar un 
rendimiento similar. Esta diferencia se debe a que la arquitectura spline optimiza su estructura 
mediante composiciones más controladas, evitando el uso excesivo de parámetros. En total, KANS 
utilizó alrededor de 1,200 parámetros entrenables, en contraste con los 15,000 necesarios en la red 
MLP. Esta brecha refleja no solo una mejora en el rendimiento, sino también una mayor economía 
de recursos, aspecto crítico en entornos con limitaciones computacionales. 

Desde el punto de vista visual, las reconstrucciones generadas por ambas arquitecturas muestran 
diferencias claras en cuanto a exactitud geométrica y coherencia estructural. Como se observa en la 
Figura 11, existe una notable diferencia en la preservación de las características topológicas del Swiss 
Roll. 
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Figura 11. Comparación visual entre reconstrucciones de KANS y MLP. (a) Swiss Roll original, 
(b) Reconstrucción KANS, (c) Reconstrucción MLP. Fuente: elaboración propia. 

Con el fin de facilitar la visualización y síntesis de los principales hallazgos cuantitativos, a 
continuación se presenta una tabla que resume las métricas comparativas entre ambas 
arquitecturas. Esta tabla permite observar de manera directa las diferencias en rendimiento, 
eficiencia y complejidad entre KANS y MLP, proporcionando una visión general del comportamiento 
de cada modelo en la tarea de reconstrucción. 

     Tabla 1. Rendimiento comparativo entre KANS y MLPs 
Fuente: elaboración propia. 

Métrica KANS MLPs 

Tiempo entrenamiento (min) 12 45 

Número de parámetros  1,200 15,000 

MSE (entrenamiento) 0,08 0,21 

MSE (test ± desviación)  0.09 ± 0.02 0.25 ± 0.05 

Comparación del rendimiento de las arquitecturas KANS y MLP en tareas de reconstrucción del 
conjunto Swiss Roll. Se reportan métricas de eficiencia computacional (tiempo de entrenamiento), 

complejidad del modelo (número de parámetros) y exactitud (error cuadrático medio en 
entrenamiento y prueba). 

Un aspecto particularmente relevante del modelo KANS es su capacidad de interpretación, derivada 
del uso de splines adaptativos que modelan explícitamente la influencia de cada variable de 
entrada. Como se ilustra en la Figura 12, a diferencia de las MLPs, que actúan como cajas negras, las 
KANS permiten visualizar las funciones aprendidas durante el entrenamiento. 

 

Figura 12. Representación de los splines asociados a las coordenadas x y z del Swiss Roll. 
Fuente: elaboración propia. 

 
 En estas curvas se identifican puntos de inflexión que corresponden a regiones críticas de la 
estructura de datos, lo cual puede resultar útil en aplicaciones donde se requiere entender el 
comportamiento del modelo para tomar decisiones informadas . En conjunto, los resultados 
obtenidos validan la propuesta de las Kolmogorov-Arnold Network Splines como una alternativa 
eficiente y explicable frente a modelos tradicionales de reconstrucción neuronal. Su bajo error, alta 
estabilidad, menor complejidad y mayor transparencia las posicionan como una opción sólida para 
problemas donde la calidad de la reconstrucción y la interpretabilidad sean factores clave. 
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4. DISCUSIÓN 
 
Los resultados de este estudio evidencian que las Kolmogorov-Arnold Network Splines (KANS) 
constituyen una alternativa eficiente y precisa frente a las redes neuronales tradicionales en tareas 
de reconstrucción de datos y eliminación de ruido. Este hallazgo coincide con investigaciones 
previas que han explorado el uso de funciones spline en redes neuronales. Por ejemplo, [22] 
propusieron redes neuronales ReLU univariantes interpretadas como splines, lo que permitió 
comprender de forma más intuitiva la estructura de la superficie de pérdida y sus puntos críticos, 
facilitando así el análisis de la dinámica de aprendizaje. 
 
Nuestros experimentos confirman que las KANS logran menor error cuadrático medio (MSE) y 
tiempos de entrenamiento más cortos que los modelos tradicionales. No obstante, también revelan 
que la estabilidad del entrenamiento puede verse comprometida por la cantidad de parámetros 
entrenables. En esta línea, [23] abordaron el problema mediante una KANS con nudos libres, 
reduciendo el número de parámetros y mejorando la estabilidad, acercando el modelo a la escala de 
complejidad de las redes neuronales convencionales. 
 
Además, investigaciones recientes han explorado la integración de las KANS con mecanismos de 
atención. [24] presentaron una versión informada por Kolmogorov-Arnold que demuestra cómo esta 
combinación puede mejorar el rendimiento en tareas que requieren identificar regiones críticas en 
los datos, lo que sugiere que las KANS podrían adaptarse dinámicamente a la densidad local de la 
información y, de este modo, superar limitaciones inherentes a modelos tradicionales. Esta 
capacidad de adaptación, sumada a su exactitud, refuerza el potencial considerable de las KANS en 
contextos que demandan alta flexibilidad y exactitud en el manejo de datos complejos. Sin 
embargo, su aplicabilidad sigue dependiendo del dominio y la naturaleza del problema: en 
escenarios con menor complejidad computacional, los modelos tradicionales continúan siendo 
soluciones eficientes. En consecuencia, la elección entre KANS y redes convencionales debe basarse 
en una evaluación cuidadosa de las necesidades específicas de cada aplicación. 
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