Dashboards en SAP Business Intelligence para la Toma de Decisiones en la Industria Automotriz: Una Revisión Sistemática

Autores

  • Luz Giannina Zegarra Chamorro Universidad Tecnológica del Perú
  • Ayrton Gustavo Ormeño Audante Universidad Tecnológica del Perú

DOI:

https://doi.org/10.26495/erc.2863

Palavras-chave:

Dashboard, SAP BI, toma de decisiones, Industria automotriz, Business Intelligence

Resumo

La toma de decisiones permite a las organizaciones ser más ágiles, eficientes en un mercado tan competitivo donde los datos son considerados el principal activo para la generación de información valiosa. Este artículo presenta una revisión sistemática adoptando la metodología PRISMA, para analizar el uso de dashboards en SAP Business Intelligence (SAP BI) en la toma de decisiones en la industria automotriz. Se llevó a cabo una búsqueda exhaustiva en la base de datos Scopus, que luego de aplicar los diferentes criterios de inclusión y exclusión, resultó un total de 21 artículos para el análisis correspondiente, teniendo en cuenta las preguntas de investigación planteadas. Los resultados principales indican que los dashboards facilitan el acceso a información crítica de manera rápida y eficiente, mejorando la alineación entre los objetivos estratégicos y las operaciones diarias de las organizaciones. Sin embargo, también se identificaron desafíos en su implementación, como la necesidad de capacitación adecuada y la variabilidad en su efectividad según el contexto organizacional. Las conclusiones destacan la importancia de integrar dashboards en los sistemas de BI para optimizar la toma de decisiones en la industria automotriz, así como la necesidad de abordar los desafíos asociados con el manejo de estas herramientas. En futuras investigaciones se sugiere ampliar el alcance a otros sectores y examinen el impacto de la cultura organizacional en la adopción de estas herramientas.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Abu-AlSondos, I. A. (2023). The impact of business intelligence system (BIS) on quality of strategic decision-making. International Journal of Data and Network Science, 7(4), 1901-1912. https://doi.org/10.5267/j.ijdns.2023.7.003

Ahmad, S., Miskon, S., Alabdan, R., & Tlili, I. (2020a). Exploration of Influential Determinants for the Adoption of Business Intelligence System in the Textile and Apparel Industry. Sustainability, 12(18), Article 18. https://doi.org/10.3390/su12187674

Ahmad, S., Miskon, S., Alabdan, R., & Tlili, I. (2020b). Towards Sustainable Textile and Apparel Industry: Exploring the Role of Business Intelligence Systems in the Era of Industry 4.0. Sustainability, 12(7), Article 7. https://doi.org/10.3390/su12072632

Ahmad, S., Miskon, S., Alkanhal, T. A., & Tlili, I. (2020). Modeling of Business Intelligence Systems Using the Potential Determinants and Theories with the Lens of Individual, Technological, Organizational, and Environmental Contexts-A Systematic Literature Review. Applied Sciences, 10(9), Article 9. https://doi.org/10.3390/app10093208

Ahmed, A., Yusof, S., & Oroumchian, F. (2019). Understanding the Business Value Creation Process for Business Intelligence Tools in the UAE. Pacific Asia Journal of the Association for Information Systems, 11(3). https://doi.org/10.17705/1pais.11304

Al-khateeb, B. A. A. (2024). Business Intelligence (BI): A Critical Strategy for University Success and Sustainability. International Journal of Asian Business and Information Management (IJABIM), 15(1), 1-15. https://doi.org/10.4018/IJABIM.340387

AL-Okaily, A., Ai Ping, T., & Al-Okaily, M. (2021). Towards Business Intelligence Success Measurement in an Organization: A Conceptual Study. 11(2), 155-170. https://doi.org/10.33168/JSMS.2021.0210

Alzeaideen, K. (2019). Credit risk management and business intelligence approach of the banking sector in Jordan. Cogent Business & Management, 6(1), 1675455. https://doi.org/10.1080/23311975.2019.1675455

Arnaboldi, M., Robbiani, A., & Carlucci, P. (2020). On the relevance of self-service business intelligence to university management. Journal of Accounting & Organizational Change, 17(1), 5-22. https://doi.org/10.1108/JAOC-09-2020-0131

Asrol, M., Marimin, Machfud, & Yani, M. (2020). Business Intelligence Model Construction to Improve Sugarcane Yield for a Sustainable Sugar Industry. Journal of Advanced Research in Dynamic and Control Systems, Volume 12(06-Special Issue), 109-118. https://doi.org/10.5373/JARDCS/V12SP6/SP20201013

Biagi, V., & Russo, A. (2022). Data Model Design to Support Data-Driven IT Governance Implementation. Technologies, 10(5), Article 5. https://doi.org/10.3390/technologies10050106

Bitkowska, A., Detyna, B., & Detyna, J. (2023). Towards Integration of Business Process Management and Knowledge Management. IT Systems’ Perspective. Engineering Management in Production and Services, 15(4), 34-52. https://doi.org/10.2478/emj-2023-0027

Burnay, C., Bouraga, S., Faulkner, S., & Jureta, I. (2020). User-Experience in Business Intelligence—A Quality Construct and Model to Design Supportive BI Dashboards. En F. Dalpiaz, J. Zdravkovic, & P. Loucopoulos (Eds.), Research Challenges in Information Science (pp. 174-190). Springer International Publishing. https://doi.org/10.1007/978-3-030-50316-1_11

Dolhopolov, A., Castelltort, A., & Laurent, A. (2024). Implementing Federated Governance in Data Mesh Architecture. Future Internet, 16(4), Article 4. https://doi.org/10.3390/fi16040115

Gaol, F. L., Abdillah, L., & Matsuo, T. (2020). The Implementation of Business Intelligence on Cost Accounting – Case Study of XYZ Company. https://doi.org/10.21203/rs.3.rs-30203/v1

Gonçalves, C. T., Gonçalves, M. J. A., & Campante, M. I. (2023). Developing Integrated Performance Dashboards Visualisations Using Power BI as a Platform. Information, 14(11), Article 11. https://doi.org/10.3390/info14110614

Gonzales, R., & Wareham, J. (2019). Analysing the impact of a business intelligence system and new conceptualizations of system use. Journal of Economics, Finance and Administrative Science, 24(48), 345-368. https://doi.org/10.1108/JEFAS-05-2018-0052

Hamzehi, M., & Hosseini, S. (2022). Business intelligence using machine learning algorithms. Multimedia Tools and Applications, 81(23), 33233-33251. https://doi.org/10.1007/s11042-022-13132-3

Khalid, A. S., Hassan, N. H., Razak, N. A. A. B., & Baharuden, A. F. (2020). Business Intelligence Dashboard for Driver Performance in Fleet Management. Proceedings of the 2020 11th International Conference on E-Education, E-Business, E-Management, and E-Learning, 347-351. https://doi.org/10.1145/3377571.3377642

Khatibi, V., Keramati, A., & Shirazi, F. (2020). Deployment of a business intelligence model to evaluate Iranian national higher education. Social Sciences & Humanities Open, 2(1), 100056. https://doi.org/10.1016/j.ssaho.2020.100056

Khatuwal, V. S., & Puri, D. (2022). Business Intelligence Tools for Dashboard Development. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), 128-131. https://doi.org/10.1109/ICIEM54221.2022.9853086

Kongthanasuwan, T., Sriwiboon, N., Horbanluekit, B., Laesanklang, W., & Krityakierne, T. (2023). Market Analysis with Business Intelligence System for Marketing Planning. Information, 14(2), Article 2. https://doi.org/10.3390/info14020116

Kurdi, B. A., Alshurideh, M., Alshurideh, H., & Al-Gasaymeh, A. (2022). THE ROLE OF BUSINESS INTELLIGENCE IN SOCIAL MEDIA MARKETING AND ITS IMPACT ON FIRM PERFORMANCE. International Journal of Theory of Organization and Practice (IJTOP), 2(1), Article 1. https://doi.org/10.54489/ijtop.v2i1.165

Liu, S., Zhang, H., Yang, Z., Kong, J., Zhang, L., & Gao, C. (2023). UXBIV: An Evaluation Framework for Business Intelligence Visualization. IEEE Access, 11, 92391-92415. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3300418

Mudau, T. N., Cohen, J., & Papageorgiou, E. (2024). Determinants and consequences of routine and advanced use of business intelligence (BI) systems by management accountants. Information & Management, 61(1), 103888. https://doi.org/10.1016/j.im.2023.103888

Muppidi, A., Hashim, A. S., Hasan, M. H., & Muazu, A. A. (2023). A Conceptual UX Model for Designing and Developing the Business Intelligence Dashboards. Journal of Computer Science, 19(12), 1505-1519. https://doi.org/10.3844/jcssp.2023.1505.1519

Nabil, D. H., Rahman, Md. H., Chowdhury, A. H., & Menezes, B. C. (2023). Managing supply chain performance using a real time Microsoft Power BI dashboard by action design research (ADR) method. Cogent Engineering, 10(2), 2257924. https://doi.org/10.1080/23311916.2023.2257924

Nakhal, A. J., Patriarca, R., Di Gravio, G., Antonioni, G., & Paltrinieri, N. (2021). Investigating occupational and operational industrial safety data through Business Intelligence and Machine Learning. Journal of Loss Prevention in the Process Industries, 73, 104608. https://doi.org/10.1016/j.jlp.2021.104608

Necochea-Chamorro, J. I., & Larrea-Goycochea, L. (2023). Business Intelligence Applied in the Corporate Sector: A Systematic Review. TEM Journal, 2225-2234. https://doi.org/10.18421/TEM124-33

Nik, N. N. A., Hassan, N. H., Baharuden, A. F., Bakar, N. A. A., & Maarop, N. (2019). Data Visualization of Supplier Selection Using Business Intelligence Dashboard. En H. Badioze Zaman, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, N. Mohamad Ali, & M. N. Ahmad (Eds.), Advances in Visual Informatics (pp. 71-81). Springer International Publishing. https://doi.org/10.1007/978-3-030-34032-2_7

Orlovskyi, D., & Kopp, A. (2020). A Business Intelligence Dashboard Design Approach to Improve Data Analytics and Decision Making.

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160

Paramita, A. S., Prabowo, H., Ramadhan, A., & Sensuse, D. I. (2023). Modelling Data Warehousing and Business Intelligence Architecture for Non-profit Organization Based on Data Governances Framework. Journal of Applied Data Sciences, 4(3), 276-288. https://doi.org/10.47738/jads.v4i3.117

Popovič, A., Puklavec, B., & Oliveira, T. (2018). Justifying business intelligence systems adoption in SMEs: Impact of systems use on firm performance. Industrial Management & Data Systems, 119(1), 210-228. https://doi.org/10.1108/IMDS-02-2018-0085

Ranabhat, S. K., Kunjukrishnan, M. L., Dubey, M., Curran, V., Dubey, A. K., & Dwivedi, N. (2024). Exploring the usage of learning resources by medical students in the basic science stage and their effect on academic performance. BMC Medical Education, 24(1), 543. https://doi.org/10.1186/s12909-024-05511-1

Salaki, R. J., & Ratnam, K. A. (2018). Agile Analytics: Applying in the Development of Data Warehouse for Business Intelligence System in Higher Education. En Á. Rocha, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Trends and Advances in Information Systems and Technologies (pp. 1038-1048). Springer International Publishing. https://doi.org/10.1007/978-3-319-77703-0_101

Sang, G. M., Xu, L., & de Vrieze, P. (2016). Implementing a Business Intelligence System for Small and Medium-sized Enterprises.

Schiavone, F., Leone, D., Caporuscio, A., & Kumar, A. (2022). Revealing the role of intellectual capital in digitalized health networks. A meso‑level analysis for building and monitoring a KPI dashboard. Technological Forecasting and Social Change, 175, 121325. https://doi.org/10.1016/j.techfore.2021.121325

Setyono, J. C., Suryawidjaja, W. S., & Girsang, A. S. (2022). Social Network Analysis of Cryptocurrency using Business Intelligence Dashboard. HighTech and Innovation Journal, 3(2), Article 2. https://doi.org/10.28991/HIJ-2022-03-02-09

Singh, G., Kumar, A., Singh, J., & Kaur, J. (2023). Data Visualization for Developing Effective Performance Dashboard with Power BI. 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), 968-973. https://doi.org/10.1109/ICIDCA56705.2023.10100169

Sorour, A., & Atkins, A. S. (2024). Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards. Journal of Electronic Science and Technology, 22(1), 100233. https://doi.org/10.1016/j.jnlest.2024.100233

Sousa, M. J., & Dias, I. (2020). Business Intelligence for Human Capital Management. International Journal of Business Intelligence Research (IJBIR), 11(1), 38-49. https://doi.org/10.4018/IJBIR.2020010103

Teoh, S. W. K., Petrovski, M., & Mamas, J. (2019). From data vault to dashboard: Using business intelligence tools to encourage reflective learning. Journal of Pharmacy Practice and Research, 49(1), 98-98. https://doi.org/10.1002/jppr.1485

Wikamulia, N., & Isa, S. M. (2023). Predictive business intelligence dashboard for food and beverage business. Bulletin of Electrical Engineering and Informatics, 12(5), Article 5. https://doi.org/10.11591/eei.v12i5.5162

Publicado

2025-01-02

Edição

Secção

Ingenierías

Como Citar

Dashboards en SAP Business Intelligence para la Toma de Decisiones en la Industria Automotriz: Una Revisión Sistemática. (2025). Epistemia Revista Científica, 9(1), 1-13. https://doi.org/10.26495/erc.2863